2010年代大數據與人工智慧在行為與社會科學的應用趨勢,總結來說是個「見山是山,見山不是山,見山還是山」的歷程。本文回顧過去2010-2019十年之間,主要以小樣本、結構化資料為主的行為與社會科學研究,為何開始擁抱大樣本、非結構化的資料後,又逐漸回歸到細緻的小樣本研究;同時,用來分析資料的統計模型,為何從簡單的解釋性模型逐漸過渡為複雜的預測性模型後,而又轉向解釋性模型?理論上,這些大數據的搜集與分析,將使得研究結論因為樣本多樣性與統計檢定力俱足而能有好的可重現性。實務上,大數據與人工智慧方法對於行為與社會科學的影響卻是將研究從低可重現性提升到高可重現性後,又使其陷入低可重現性的困境。由於這些更迭,文末並討論行為與社會科學研究者在面對這些大數據與人工智慧的變革與衝擊時,該是聞風不動抑或聞風而動?